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Abstract-Uncertainties inherent to transport processes in realistic heterogeneous media can be described 
by non-deterministic equations with random coefficients. In this paper, we undertake an analytical study 
of three classes of heat and mass transfer phenomena described by convection-diffusion reaction continuum 
models and discrete models : (I) unsteady dispersion in a random filtration velocity field ; (2) anomalous 
diffusion in media with random reaction sites; (3) size effect on thermal conductivity of isotropically 
disordered solid lattices. Using small perturbation analysis, we solve three non-trivia1 problems described 
by differential equations with random coefficients. Although the random part of the parameters is much 
smaller than the deterministic (weak disorder), the effect of randomness on the behavior of the averaged 

quantities is both important and counterintuitive. 

1. INTRODUCTION 

THE ANALYTICAL study of heat and mass transfer 
processes in media involving very short or very large 
length scales (e.g. microelectronics or geophysical 
media) can introduce non-deterministic systems. The 
urgent nature of underground waste management (as 
it pertains to the environmental restoration) has 
focused the attempts to predict solute movement in 
aquifers and field solids. Although such phenomena 
involve field scale distances and times, the present 
body of experimental data is neither extensive nor 
precise as a result of the large-scale nonuniformity of 
geological strata. In other cases, randomness can be 
introduced to facilitate the description of a complex 
system. There has always been an interest to model 
transport processes in physiological media of com- 
plicated geometry (e.g. cardiovascular or respiratory 
networks) but the inherent randomness of their struc- 
ture calls for special methods. Occasionally, disorder 
is desirable. For example, the presence of impurities 
and other defects in solids, generate a wider range 
of properties than would be available with ‘perfect’ 
lattices. 

In most man-made and natural systems the source 
of uncertainty is threefold: (a) model uncertainty 
(limited sample), (b) parameter uncertainty (sampling 
error), and (c) input error (error in measuring initial 
and boundary conditions or system inputs). In this 
work, we study systems with type (b) uncertainty. 
Uncertainties in structural or thermophysical pa- 
rameters can be most economically described by stat- 
istics. For example, transport processes in hetero- 
geneous media of disordered microstructure (e.g. 
fluid-saturated porous media) have been described 
by continuum models with stochastic parameters, cf. 
Sposito ef al. [ 11. In order for stochastic models to be 
useful, one needs to relate microscopic statistical 

information to macroscopic (average) properties. At 
first order, the following problem needs to be solved : 
given an a priori statistical description of the stoch- 
astic field, predict the average (or ‘effective’) value. 
Three classes of methods are available for the solution 
of such non-deterministic problems : (i) Monte Carlo 
simulation, (ii) perturbation analysis, cf. Keller [2], 
and (iii) direct numerical methods, cf. Padovan and 
Guo [3]. In this work, approximate methods of class 
(ii) will be employed in the solution of differential 
equations with stochastic coefficients that model cer- 
tain heat and mass transport problems. 

We present a very brief overview of available meth- 
odologies for the solution of stochastic heat and mass 
transfer problems. One group of researchers have 
implemented classical methods of the field of applied 
mechanics. Samuels [4] obtained analytical solutions 
for the one-dimensional heat conduction equation 
with random boundary conditions and random heat 
generation. Ahmadi [5] solved the unsteady heat con- 
duction equation with spatially random heat con- 
ductivity following a perturbation scheme developed 
by Keller [2]. Tzou [6, 71 derived the statistics of one- 
dimensional temperature fields in solids with random 
conductivity. Employing n-point probability func- 
tions, another group of researchers (with statistical 
mechanics background) have developed a class of 
techniques to obtain rigorous bounds of the effective 
transport coefficients for linear transport processes in 
two-phase random media under steady-state 
conditions. Weissberg [8] was the first to derive lower- 
order variational bounds for the effective diffusion 
coefficient through a bed of spheres. Torquato and 
Lado [9] obtained high-order bounds for the effec- 
tive conductivity of composite media. Recently, 
Rubinstein and Torquato [lo] derived rigorous 
bounds of effective properties associated with the 
diffusion-controlled reaction equation. A critical 
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NOMENCl.ATlJRE 

A { .I, a{ ] differential operators, 
equation (5) 
species concentration 
transport coefficient 
wave number 
random mass of nth mode 
number of nodes in the harmonic chain, 
Fig. 3 
mean velocity, equation (2) 

S correlation functions 
position vector 
time 
longitudinal component of velocity 
position vector in the transverse direction 
longitudinal coordinate. 

Greek symbols 
I species annihilation rate 

species production rate 
spring constant of harmonic chain 
delta function 
amplitude of random fluctuation, 
equation (2) 
localization factor 
random mass variation, equation (22) 
[dimensionless] 
variance. ( p2 > 
correlation time 
Schrddinger eigenfunction 
radial frequency. 

Special symbols 
* complex conjugate 
Q(. . .) order of.. 
o(. .) much less than 

(.> ensemble average, expected value. 

review of the available literature suggests that the 
stochastic approaches adopted are determined by the 
problem to be solved. Extending the models to 
account for time-dependency or two- or three-dimen- 
sionality is not a trivial task. 

In this work. elegant methods from the applied 
physics literature will be applied to three non-deter- 
ministic systems : (1) convective transport in col- 
umnar packed beds, (2) diffusive transport in the pres- 
ence of a first-order autocatalytic reaction, and (3) a 
one-dimensjonal ilnperf~t-lattice model of heat con- 
duction in solids. We start from stochastic governing 
equations with random coefficients (of given statistics) 
and follow rigorous procedures of small perturbation 
analysis. The only empirical element of this approach 
is the statistical behavior of the random coefficients. 
Our methodology has been successfully used to derive 
the effective energy equation for convective transport 
in random packed beds, cf. ref. [l I]. The appendix of 
the above article contains a short exposition of the 
necessary theoretical background for problems (1) 
and (2) which involve continuum models. Problem 
(3) involves a discrete model of heat conduction which 
can also have applications in solid mechanics. 

Although we try to keep in mind the obvious tech- 
nological applications of the present work, our cur- 
rent objective is to extend the applicability of stoch- 
astic methodologies borrowed from applied physics 
into the field of heat and mass transfer and to improve 
the predictive capacity of transport models. The 
physical problems suggested during the development 
of the solutions serve as a mere motivation to pursue 
this study. Furthermore, it is hoped that this work 
will contribute to further development of the math- 
ematical tools borrowed from applied physics. 

2. PROBLEM: APPROXIMATE SOLUTION OF 

CONVECTION-DISPERSION STOCHASTIC 

EQUATIONS 

Assume that the concentration c(z, t) of a con- 
servative solute in an unsteady unidirectional velocity 
field inside a fully saturated porous medium is 
described by the following convection-dispersion 
equation, cf. Sposito et al. [ 11 

where z is the axial coordinate and x the two-com- 
ponent vector representing the coordinates in the 
transverse direction. The equation above describes 
the axial distribution of the concentration of a solute 
which has been introduced uniformly over the trans- 
verse direction at t = 0. Such a situation arises, for 
example, in stratified flow in a typical sedimentary 
rock. The longitudinal transport coefficient D, 
depends on the local filtration velocity, cf. ref. [I I]. 
The macroscopic variation of permeability in a z- 
stratified porous medium produces non-Llniform fil- 
tration velocity (which is unsteady at large Reynolds 
numbers) and transport coefficient distributions 
which are modelled by random processes. We can 
separate the velocity and the transport coefficient into 
deterministic and random parts 

cz’(x, t) = C$+@‘(x, f), D,(x,tf = D+~D'(x,tf 

where q and D are constants. Assuming stochastic 
uniformity in space and time, we can define the fol- 
lowing correlation functions : 
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<Q’(x,, t,)Q’(x;?. td) = Q(lx, -xzlt It, -tzl) 

<Q’(x,,t,)D’(x,, tz)> = Wlx, -x21, It, -txl) 

W(x,, t1W(xz, t*)) = ml --x21, It, -4). (3) 

Due to equations (2), the operators in equation (1) can 
be separated into deterministic and stochastic parts 

f; = /tic) +&,X(X, l){C} (4) 

where the deterministic and stochastic operators are 
defined as follows : 

A”(x,t)j i = -4nXJ& i+Wx,O~{ I. (5) 

Equations (4) and (5) define a multiplicative stoch- 
astic process, cf. Fox [ 121. Now let z be the maximum 
of the correlation times of functions (3). Following 
van Kampen [13] and Fox [12], we can obtain the 
solution of equation (4) in terms of a time-ordered 
cumulant expansion and then take its ensemble aver- 
age. The result is the solution of an evolution equation 
which can be truncated to give the following equation 
correct to order O(s*z) : 

%$ = A{<c)~+&~K*{(C)~. (6) 

Formally, equation (6) is an integro-differential equa- 
tion For large times t D z and because of the cluster 
property [ 141, the second operator on the right-hand 
side of equation (6) becomes 

=Dp${ :fDs&{ }-2~,&{ ) (7) 

with the following renormalized transport co- 
efficients : 

x 
= D, = 

s 
Q(0, t) dt, Ds = 

s 
WA 0 dt, 

0 0 

xi 

D, = 

s 

R(0, t) dt. (8) 
0 

The evolution equation (6) becomes exact for all times 
in the case of delta-correlated temporal fluctuations 
(7: --) 0). 

Due to equations (5) and (7), the average transport 
equation (6) can be rearranged as follows : 

The randomness of the velocity field brings an 
enhancement of the transport coefficient by a hydro- 
dynamic component c2DQ (first term on the right- 
hand side of equation (9)). In addition, due to the 
statistical correlation between the velocity and axial 
transport coefficient as given by equations (3), higher 
order derivative terms appear in equation (9) and the 
transport equation for the average becomes different 
in form from the Fickian local transport equation (1). 
However, in the case of finite transport coefficients 
(8), the solution of equation (9) becomes Fickian for 
asymptotically large times. For example, the solution 
of the transport equation for the delta pulse initial 
condition (c) = S(z), reaches the Fickian solution as 
t -+ co. The rate at which this asymptotic limit is 
approached depends on the magnitude of &*Ds and 
END, (Burnett coefficients). The derivation of this 
asymptotic limit can be obtained by following Fox 
and Barakat [14] who solved an equation similar to 
equation (9) in terms of an asymptotic series. To the 
author’s knowledge, this is the first time that an equa- 
tion like equation (9) has been proposed for con- 
vective transport. Gelhar et al. [15], who considered 
steady velocity field and included transverse diffusion, 
arrived at a third-order equation which also exhibits 
Fickian behavior at large times. 

It is important here to examine whether non-Fick- 
ian transport can occur early in the process described 
by equation (9). We will still assume that ‘early’ is 
not inconsistent with our postulate t >> 7 and that 
coefficients (8) are constant. Of course, the physics of 
the problem will dictate the correlation functions in 
equations (3). However, it is traditional in the theory 
of stochastic equations to introduce the statistics by 
postulation. We solve equation (9) subject to a step- 
like initial condition (Heaviside dist~bution~ : (c} = 
1.0 for O<Z< 1 and (c)=0 for 1 <z<2. We 
use a fourth-order accurate finite-difference scheme 
(grid size AZ = 0.1) and the parameters shown in 
Fig. 1. These parameters, as well as others in appli- 
cations in the following sections, do not correspond 

a<O+qa’c’,D’-_- ~ d cc> 
at a2 

+ .,a4<ca 
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FIG. 1. Numerical solution of the fourth-order non-Fickian 
transport equation (9) 
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to actual physical data but serve to give a graphical 
representation of the solution. The solution is plotted 
in Fig. 1 for a certain time instant. The significant 
deviation (in the form of a damped wave upstream 
from the front) from the Fickian distribution 
(D” = D”’ = 0) can be attributed to the third-order 

dispersive term in equation (9). 
This dispersive (in the classical sense) phenomenon 

in random fields is unexpected in view of the dis- 
sipative nature of the solute transport equation (1). 
In practice, one would expect that equation (9) holds 
when the velocity (and the transport coefficient which 

depends on it) fluctuates according to equation (4). 
Flow experiments through packed beds (made of 
spherical beads) reveal a disorganized temporal 
behavior of the interstitial velocity when the Reynolds 

number (based on the bead diameter) exceeds 
approximately 100. Sundaresan et al. [16] have pre- 

viously proposed heuristic hyperbolic transport equa- 
tions after examining dispersive transport of tracers 
in columnar porous beds for very high Reynolds num- 
bers. Their observation of finite speed of signal propa- 
gation provides some corroborative evidence towards 
the justification of similar hyperbolic transport equa- 
tions (such as equation (9)). 

3. PROBLEM: EFFECT OF RANDOMLY 

DISTRIBUTED HOMOGENEOUS REACTION 

SOURCES 

Consider the diffusion problem in a medium of 
random structure contained in a volume V in which 

a conserved species is produced by a homogeneous 
first-order reaction. Assume that the species con- 
centration is governed by the following reaction- 

diffusion equation : 

g c(r, t) = DV’c(r, t) + [b(r) + cr(t)]c(r, t) ; 

n-VC=O on av (10) 

where r is the position vector in V, 8 V the boundary 

of V, and n the normal unit vector. In addition to 
chemical processes, the above equation can be used 
to model several biophysical processes (bioheat trans- 
port or production and diffusion of metabolites in 

perfused tissues, population dynamics, etc.). The 
diffusion coefficient D characterizes the homogenized 

medium. The species is generated according to the 
spatially varying production rate /l(r). We have also 
assumed in equation (10) that the species is absorbed 
(annihilated) uniformly at a rate cc(t) so that its vol- 
ume content in V remains constant, cf. Zel’dovich [ 171 

constant c0 = 
s 

c(r, t) d V. (11) 
b 

The absorption term cc(t) can be readily suppressed 
by applying a simple integral transformation which is 
given in this section (equation (19)). 

The conservation constraint (11) and the zero-flux 
boundary condition for the concentration in equation 
(10) imply that the absorption rate is equal to the 
average production rate 

1 
a(f) = - -- 

s co Y 
,8(r)c(r, t) d V. (12) 

Using the simple exponential transformation 

b(r, t) = c(r, t) exp 
is 

- ,: W(r)+~O’)l dt’ (13) 
I 

equation (I 0) is transformed to the following ‘inter- 

action picture’ [ 121 : 

(14) 

with 

&r,t) = exp {-?/3(r)l{DV*) exp {[b(r)). (15) 

We can now approximate the operator (15) for small 

times and smooth P(r) by expanding the exponentials 
in Taylor series : 

@r, t) N D{[tV’fl+ t’VgVp+ o(t’flVgVa)] 

+2[tVfi+O(t3flV/I)]V+V2}. (16) 

The solution to equations (13)-(15) can be given in 
terms of the time-ordered exponential [ 121. The latter 
is identical to the ordinary exponential since &r, t ,) 
commutes with &r, tz). Consequently, the exact solu- 
tion of equations (13)-( 15) can be formally written as 
follows : 

c(r, t) = exp 
iS 

: [B(r) + WI1 df’ 
I 

xexp { 11 @r,t) dl)c(r.O). (17) 

In order to examine the behavior of solution (17), 
we consider a delta-pulse initial condition c(r, 0) = 
c&r-r’), where r belongs to the three-dimensional 
space. Equations (16) and (17) give 

c(r, t) - exp 
is 

: [B(r) + 401 dt’ 

+D;V’p+D;VgV~+0(Dt4~V~V~) 

x &exP 
1 

- &[r-r’ 

+t’vg+o(t”gv~)]’ . I (18) 

The first factor on the right-hand side of expression 
(18) shows that the concentration increases faster in 
areas where the production rate P(r) is larger than 
the average (12), while the second factor represents 
normal diffusion which is Fickian for small times. 
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Since the leading behavior of the first term is expon- 
ential in time, the species is accumulated in regions of 
high values of P(r). An interesting result concerning 
the topology of such ‘dense’ regions has been obtained 
by Zel’dovich [17] for weak diffusion (D g 0). 
Assuming that the spatial variation of /l(r) follows the 
Gaussian distribution and using percolation theory, 
Zel’dovich [17] proved that the regions of high con- 
centration become unconnected (islands). The result- 
ing structure consists of dense inclusions imbedded in 
a ‘dry’ porous matrix. 

Equation (18) is a novel asymptotic formula for the 

concentration distribution, correct to 0(&“/N/N/I). 
We perform a two-dimensional numerical simulation 
of equation (10) aimed at understanding the long time 
behavior of the solution. Starting with a pulse-like 
initial disturbance in a random field /l(r), we can 
observe that the disturbance follows an unpredictable 
pattern from one local maximum to another. After it 

diffuses according to expression (18), the peak of the 
disturbance ‘tunnels’ to the nearest maximum of P(r) 
which is not necessarily the absolute maximum, as 
shown in Fig. 2. It is apparent that diffusion destroys 
the island structure predicted by Zel’dovich [17]. To 
examine this phenomenon, we solve the problem for 
an ensemble of numerically-generated random fields 
p(r) following the Gaussian distribution. The results 
are surprising: after forming islands, the initial dis- 
turbance spreads in a random walk fashion for long 
times. Despite the fact that the above is a qualitative 
observation based on hundreds of numerical simu- 
lations (such as the one presented in Fig. 2), it indi- 
cates that the transport process modelled by the stoch- 
astic equation (10) does not exhibit a simple diffusive 
behavior. 

To investigate whether this atypical behavior is 
caused by the random variation of the reaction rate 
b(r), we apply the following transformation to the 
solution of equation (10) : 

C(r,l)=r.(r,i)exp{-fz(r’)df.) (19) 

which yields 

^ 
g C(r, 2) = DV*C(r, t) +/J(r)C(r, t) ; 

n.VC=O on av. (20) 

The solution of equation (20) can be written as a 
linear superposition of terms of the form 
exp {l.,,?}Y,,(r), where I,, and Y’, are the eigenvalues 

and eigenfunctions, respectively, of the Schrodinger 
eigenvalue problem 

PV* +BWly,W = &Y,(r). (21) 

There is a growing body of knowledge concerning the 
type of the eigenfunctions Y’,, for various classes of 
random potentials P(r), cf. Souillard [ 181. One of the 
most interesting spectral properties of the random 

J 
FIG. 2. Numerical simulation of the diffusion reaction equa- 
tion with variable reaction rate distribution : (a) plot of the 
production rate distribution b(r) ; (b)-(d) plots of the solu- 

tion c(r, I) for three consecutive times. 

Schriidinger operator in equation (21) concerns the 
appearance of ‘localized’ states (eigenfunctions). This 
is related to the Anderson [ 191 localization phenom- 
enon (since equation (21) also models the motion of 
electrons subjected to random potential fluctuations) : 
certain electronic states can acquire a local character 
and thus an electric charge does not diffuse away. 

We now return to the reaction-diffusion equation 

(10). We postulate that the existence and spatial dis- 
tribution of these localized states is intimately con- 
nected with the degree of disorder of the potential 
j(r). The quantification of the degree of disorder is 

beyond the scope of the present work. The non-diffus- 
ive behavior of our numerical results presented above 
can be qualitatively explained in terms of competition 
between localized states. This is a novel theoretical 
result. The prediction of localized ‘hot spots’ has 
important implications in connection with the anom- 
alous dispersion of chemical or radioactive pollutants 
in the environment (pollutants generated by non- 
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point sources) and the initiation of dry-out in fluid- 
saturated debris beds. 

4. PROBLEM: LOCALIZATION OF LATTICE 

WAVES IN SOLIDS 

In this section, WC consider heat conduction by 
lattice waves in real solids with dimensions that are 

comparable to the characteristic physical length (c.g. 

the phonon mean free path). WC focus our attention 
to the estimation of the thermal conductivity across 

solid firms of submicrometer thickness which is of 
growing importance to superconductor technology 
[20] and the evolving field of micromachinery. The 
classical microscopic model of heat conduction 

involves the concept of phonon scattering in the form 
of lattice waves which collide with electrons. with 
grain and external boundaries. and with each other. 

However. in the presence ofcrystal defects. the model 
of phonons is controversial because lattice vibrations 

become localized, cf. Toda [21]. 
Even in perfect crystals there is intrinsic thermal 

rcsistancc due to common isotropic impurities. In order 
to model this intrinsic resistance. we assume that the 
crystalline structure is homogeneous, i.c. the crystal 

contains no grain boundaries. We will study a onc- 
dimensional model of an isotropically disordered lattice 
consisting of a chain of N particles of varying mass 

m,,=(m)[l+~,,]; n=1,2,3 ,.... N-tcx: (22) 

connected by harmonic springs of constant 7. The 
equation of motion at each node is m,d’u,,/dt’ 
= y(u,,+ j -2u,+u,,_ ,), where u,(l) is the displace- 
ment of the node. The governing equation for a mono- 
chromatic wave of frequency (11 (which corresponds 
to a normal mode of vibration) can be written in the 

following transmission form : 

The corresponding ordered (periodic) system can 
transmit waves without attenuation only in the fool- 

lowing frequency range : 

where lc is the wave number. In the disordered system, 
these waves are not perfectly transmitted but decay 
exponentially with the distance in the lattice 

/I(,,/ z e *“. (2.9 

In the Appendix, we present the formulation of the 
system transfer matrix and the very useful theoretical 
result of Baluni and Willemsen [22] concerning local- 

ization. In order to apply that result. we first need to 
put the transfer matrix into the proper Hermitian 
form via the following similarity transformation : 

(26) 

where R,, = to’(nz)~l,,i(2~ sin k). According to equa- 
tions (Al)--(A3) in the Appendix, the localization fac- 
tor is given by 

which reduces to 

where (Y’ = (/I’) is the (dimensionless) variance of 
the modal mass distribution according to equation 
(22). The following small wave number approxi- 
mation of equation (2X) can be easily obtained : 

The plot of the localization factor vs (dimen- 
sionless) frequency is given in Fig. 3. Expression (28) 
is valid for 0’ CC 1 : this means that waves with fre- 

quencies in the range 1.4 < m((m)/;l)’ ’ < 2.0 arc 
attenuated within a few hundred or thousand lattice 
nodes. For example, if the masses vary by 1% 
(CJ = O.Ol), a wave with frequency 01 = I .8(;>;(m)) ‘c’ 
will decay by a factor of IO after approximately 2300 
nodes. Although no dissipation is included, the model 
exhibits dissipative behavior when large spatial scales 
arc considered. Since lattice vibrations of all fre- 
quencies ultimately decay as :N -+ ix;, the thermal con- 
ductivity is finite in the case of disordered harmonic 
lattices, while it is infinite in the ordered system. The 
asymptotic relationship (29) is the well-known low 
frequency limit which has been obtained earlier with 

tedious analysis [23]. Based on this limit, Toda [Zl] 
derived an approximate expression for the thermal 
conductivity in terms of the number of normal modes 

which are extended through the lattice. 
We use here the full expression of the local- 

ization factor (28) (valid for ail frequencies in the 
passband (24)) and follow the same procedure [21, 
231 to derive the following expression for the lattice 
condLlctivity : 

K z ck,,,fN(No’+2) I” (10) 

where c denotes a constant which is O(1). k, the 
Boltzmann constant, and ,f the friction constant of 
the random (Langevin) force that characterizes the 
coupling between the lattice and heat reservoirs at 
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FIG. 3. Plot of the localization factor 1 vs frequency of vibration w for a system of springs-masses (randomly 
varying mass, u <c 1). 

both ends of the one-dimensional lattice. In the limit 
of long lattice (N >> 1/02), equation (30) approxi- 
mates the Toda [21] limit 

In Fig. 4, we plot expression (30) for the apparent 
conductivity renormalized by limit (31). For short 
lattices, K is a linear function of the size N, while the 
conductivity remains unbounded for all N. In real 
crystals, the conductivity eventually attains its con- 
stant (buIk) value since the lattice waves will also 
interact with grain interfaces, external boundaries, 
and more complicated crystal defects. Our simple 
model also does not account for two- or three-dimen- 
sional effects and anharmonic Iattice forces. 

In order to get a feeling of the length scales involved, 
let us assume a Iattice constant of I nm. Then, in the 
presence of 10% lattice impurity (CT = O.l), Fig. 4 
shows that the conductivity reaches its asymptotic 
value after approximately 1000 nodes which is equi- 
valent to a film of 1 pm thickness. Unfortunately, 
there are no measurements of apparent conductivity 
for heat conduction normal to thin films reported in 
the literature; the only available data are for con- 
duction along the film. However, the behavior of the 

10 

+ 
I)(, 

05 

00 
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1 
1. 10 100 1000 10,000 

Number of lattice nodes, N 

FIG. 4. Variation of predicted thermal conductivity K with 
lattice length N. K, is the conductivity for N --+ co. 

scaled conductivity K/K, as a function of the lattice 
size N is in qualitative agreement with the predictions 
by Flik and Tien [24] which were obtained with the 
classical phonon model. 

5. CONCLUDING REMARKS 

In the present work, we obtain the solution of three 
general non-deterministic problems in an elegant 
manner by simply exploiting rigorous analytical 
methods available in the literature of applied physics. 
These methods are applicable when the mathematical 
model of the system and the underlying statistics con- 
cerning its parameters are known a priori. The results 
we derive describe the behavior of an ensemble of 
systems. In other words, they describe the average 
behavior of a set of different realizations of the stoch- 
astic process. In practice, we are interested in the 
average solution in a single realization (one exper- 
iment). We can consider ensemble and spatial averages 
to be equivalent if the process is statistically homo- 
geneous (stationary) and the relevant length scales are 
much larger than the covariance scales. 

In the following, we summarize the original con- 

tributions of this manuscript. The general thrust of 
this work is to show the effect of microscopic disorder 
on macroscopic transport properties. The model of 
Section 2, which involves convective transport in a 
‘turbulent’ field, shows Fickian behavior as t --* CD. In 
contrast, the driven dissipative system of Section 3 
shows the same as t -+ 0. Furthermore, the behavior 
of the second system for long times is very anomalous, 
This suggests that diffusion can exhibit atypical prop- 
erties in non-deterministic fields. In Section 4, we have 
extended the result of Toda [21] for the intrinsic con- 
ductivity in disordered harmonic lattices to the whole 
spectrum of frequencies in the passband. Our pre- 
dictions for the size effect of the (renormalized) con- 
ductivity show qualitative agreement with previously 
reported [24] theoretical results obtained with phonon 
models. 
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The general mathematical problems treated in this 
work can be mapped onto a variety of other math- 
ematical or physical problems. The methodology we 
applied to the convection-dispersion equation can 
also be implements to solve a host of multiplicative 
stochastic problems (transport equations with stat- 
istically varying parameters) in a straightforward 
manner. The analysis of both the reaction-diffusion 
system with random reaction sites (parabolic equa- 
tion) and the discrete model of lattice vibrations 
(hyperboIic system) demonstrates the effect of local- 
ization in thermal systems. Analogous phenomena 
can bc encountered in computational domains where 
partial differential equations are approximated with 
finite differences or finite elements, cf. Vichnevetsky 
[ZS]. We finally observe that the method outlined in 
the Appendix can be applied to any one-dinlensional 
monocoupled structure encountered in solid mech- 
anics problems. 
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APPENDIX : LOCALIZATION FACTOR FOR 
ALMOST PERIODIC STRUCTURES 

The transfer matrix of an elastic structure consisting of N 
finite elements can be written as a product of N transfer 
matrices : r,,pT,. , T,?, r, Tz T, If each matrix is a func- 
tion of a random variable p, this formulation represents a 
~arkovian chain acting on the input vector. In the case of 
mono-coupled systems 1263, the transfer matrix is 2 x 2 and 
it can be transformed in the following Hermitian form with 
a simple similarity transformation : 

(AI) 

The elements of the transfer matrix are, in general, functions 
of the random variable p. In contrast to the periodic system, 
vibrations in an almost periodic system without dissipation 
can be localized : wavetrains initiated al a site in the system 
are attenuated according to relation (25) which also expresses 
their envelope. The concept of localization, which is due to 
Anderson [IS], has been first applied to elastic systems by 
Hodges [2j] and was further investigated by Pierre and Dow- 
ell 1281 for a finite chain of single-degree-of-fr~dom coupled 
oscillators. The following definitionof the localization factor 
is almost universally accepted in the engineering community : 

08n=,!;m,illn/lT,,,T,~ ,... T,;,.T,T,T, II W) 

where // I/ is the matrix norm. 
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In general, the dependence of the localization factor on expression for the localization factor 
the wave number or the degree of disorder is complicated. If 12 
the random transfer matrices depend on the same random 
variable with common probability distribution, analytic 

I = jo’$ln Ig,,(,n)I+o(a*) (A3) 

expressions can be obtained with perturbation methods. 
Baluni and Willemsen [22] derived the following closed-form 

which is valid for small variance CT* (weak-disorder regime). 

SUR LA SOLUTION APPROCHEE DE PROBLEMES NON DETERMINISTES DE 
CHALEUR ET DE MASSE 

Rhun~Les incertitudes inherentes aux mecanismes de transport dam les milieux heterogenes realistes 
peuvent dtre d&rites par des equations non deterministes avec des coefficients altatoires. On etudie 
analytiquement trois classes de phenomenes de chaleur et de masse decrits par des modeles continus 
conductiondiffusion-reaction et des modbles discrets : (I) dispersion variable dans un champ altatoire de 
vitesse de filtration ; (2) diffusion anormale dans des milieux avec des sites altatoires de reaction ; (3) effet 
de taille sur la conductivite thermique de trames solides en dtsordre isotrope. En utilisant une analyse de 
petite perturbation, on r&out trois problemes interessants dicrits par des equations aux d&iv&es partielles 
avec des coefficients altatoires. Bien que la part aleatoire des parambtres soit plus faible que celle deter- 
ministe (faible disordre) son effet sur le comportement des quantites moyennes est a la fois important et 

contraire a fintuition. 

UBER NAHER~NGsLB~UNGEN FUR NIGHT-DETERMINISTISCHE PR~BLEME DER 
WARME- UNDSTOFFOBERTRAGUNG 

Zusammenfassung-Die bei den Transportvorglngen in reahstischen heterogenen Medien auftretenden 
Unsicherheiten kiinnen durch nicht-deterministische Gleichungen mit Zufallskoeffizienten beschrieben 
werden. In der vorliegenden Arbeit werden drei Klassen von Phinomenen der Warme- und Stoffiiber- 
tragung analytisch untersucht, welche durch kontinuierliche und diskrete Modelle mit Konvektion, 
Diffusion und Reaktion beschrieben werden : (1) nichtstationire Dispersion in einem ungerichteten Ge- 
schwindigkeitsfeld bei Filtration ; (2) unregelmil3ige Diffusion in Medien mit zufalhg verteilten Reaktionen ; 
(3) EinfluB der GriiDe auf die Warmeleitfahigkeit von isotopisch ungeordneten festen Gittern. Unter 
Verwendung des Stiirungsverfahrens werden drei nicht-triviale Probleme geliist, welche durch Differ- 
entialgleichungen mit Zufallskoeffizienten beschrieben werden. Obwohl der Anteil an zufalligen Parametern 
wesentlich kleiner ist als derjenige deterministischer (schwach ungeordneter), ist der ZufallseinAuB auf das 

Verhalten der gemittelten GrGBen wichtig, und er widerspricht der Anschauung. 

fIPM6JIkfXEHHOE PEIIIEHME HEAETEPMHHMPOBAHHbIX 3A&4Y TEI-IJIO- H 
MACCOHEPEHOCA 

htmaums-Heonpentimmi, IIpiiCyWie npoqeccaM nepeHoca B pea.IIbHarx HeonHopowbrx cpenax, 
MOI-YT 6bITb OllHCaHbl HeAeTepMHHHpOBaHHbIMH ypaBHeH&iKMu co CnyVaiiHblMH K03@@@ieHTaMH. B 
AaHHOii pa6oTe aHi%lHTHVeCKH SiCCJIeAyloTCK TpU K.lIacCa JIBneHHii TellnO- B MaCCOlTe~HOCa,oIIHcbIBae- 

MbIe MOAenRMH KOHW.KwH-Aii~y3&iH-peaYUIIH B CIIJIOUIH~IX CpeAax H AWK~~TH~IMU MoAennMu: (1) 
necTauHonaprioe rurcneprtiposamie e cnygaiirioM none c~op0cm $Hnbpawe; (2) anohfanbnan J&$J~- 
3HII B CpeAaX CO CJIyWiiHbIM PaCIlPeAeneHHeM pe.aKIIHOHHOCnOCO6HbIX y'Ia~KOB;(3)BJIHKHHe pa3MepOB 

06pa3Ua Ha Ko3@&iUAeHT TellJIOllpOBOAHOCTH pa3yllOpKAOWHHbIX HCOTOlIaMH FIlleTOK TBepAbIX Ten. 

C HCllOnb30BaHHeM aHiUIH3a MaJIblX B03MylIIeHHii peIIIi?loTCSl TpH HeTpHBEianbHbIe 3aAaYH, OlIHCblBae- 

MbIe AHI#%peHUHaJIbHbIMH YpaBHeHHKMH CO CnydiHbIMH K03@$HUAeHTaMH. H~CMOT~S Ha TO, 9~0 

swan cnywihbm uapahmpoe HWHO~O MeHbue, seh9 onpenennehmx (cna6aa HeynOp&AOveHHOCTb), 


